

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	xotl.ql 0.2.2 documentation

Welcome to the documentation of xotl.ql: A pythonic query language!

This package provides an implementation of a query language for Python.
The query language is based on Python’s generator expression. A query
in this language looks like this:

>>> from xotl.ql import these, this

>>> query = these(child
... for parent in this
... if parent.children & (parent.age > 32)
... for child in parent.children
... if child.age < 6)

The result of the these callable is a query
object that “describes” at the syntactical level the query expression
above.

What’s new in this release?

	Updates to the latest xoutil release that introduces changes in
xoutil.context API.

	A lots of fixes to the xotl.ql.translation.py module. The core
translation algorithm is now reasonably tested.

The sub-query interpretation for functions like all_ and other like it, is now implemented and
partially tested.

We have also introduced a class-level protocol for instances so that the search space for objects be reduced
in the hope of making this translator usable for one-user-only, short-lived
applications.

... and what’s new since 0.2.0?

	Another round of redesign has been completed: The old and clunky QueryPart
concept was removed, now just expressions, bound terms,
and generator tokens are the needed.

However a new protocol was introduced.

	Compatible with Python 3.2 out-of-the-box, no need to use the 2to3
script.

	Hooray! We have now a test-bed translator
partially implemented. It’s quite new and under-tested and sub-queries
functions (like all_) are not yet translated.

Although PyPy is not fully supported, it passes all tests of the core
language, but fails in the translation. Nevertheless the
xotl.ql.translation.py is not meant to be used in production.

Core Contents:

	Overview

	The Expressions Language

	The query language and the this object

	Translating query objects

	xotl.ql.core - API for the query language

	xotl.ql.expressions - API for the expression language

	xotl.ql.interfaces - API Interfaces

	xotl.ql.translation - Common routines for translation of query objects

	xotl.ql.translation.py – A test bed translator for Python’s VM

	Terms and glossary

	Next releases goals

	Changelog

	Contributors and acknowlegment

	Licence: GNU General Public License version 3

Additional documents:

	Comparison with Pony

	Thoughts on Query Languages

	Internal details of the processing of query expressions

	References

	Index of the change proposals

What does xotl mean?

The word “xotl” is a Nahuatl word that means foundation, base. The xotl
package comprises the foundation for building reliable systems, frameworks, and
libraries. It also provides an object model that allows to build complex
systems.

It is expected that xotl will use xotl.ql to:

	Express predicates defining object relationships

	Query the object store (of course!)

	Update the object store.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Overview

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Overview

A running system often needs to retrieve objects from a single or several
sources. Those sources are often databases, but that is by no means a universal
truth; for instance, in a distributed environments objects might reside in
other types of software components.

A query language assists programmers in the task of retrieving those objects
or, at least, get a handle to those objects (like a proxy to an object in a
distributed system [1].)

The main goal for xotl.ql is to provide a pythonic way to write queries. In
this regard, xotl.ql has a similar outlook that LINQ queries have in C#
[2].

The xotl.ql package comprises two main components: the expression
language and the query language itself.

The expression language just allows to form expressions using common
operations. The result of an expression is an expression tree
object.

The expression language is fairly extensible
as you may introduce new function object operators.

The query language relies heavily upon the expression language. The core of the
query language itself is just a combination of:

	Python’s generator expressions that use the expression language;

	the object this; and

	the these class.

Before showing our first query let’s import the basics:

>>> from xotl.ql import this, these
>>> from xotl.ql.expressions import count

And now the query is just:

>>> parents = these(parent for parent in this if count(parent.children) > 2)

As you can see queries are just normal generator expressions (usually over the
this object) wrapped inside the
these function. The previous query is readable as it
stands: get all the parents that have more than 2 children.

More complex queries are allowed, for instance:

>>> from xotl.ql.expressions import all_
>>> parents = these(parent
... for parent in this
... if parent.children & all_(child.age > 10
... for child in parent.children))

This would retrieve every “parent” whose children are all more than 10 years
old (assuming age is measured in years).

Note

In the expression language, the logical operations and, or, and not
are encoded using the operators “&”, “|”, and “~” respectively;
but since in Python those are bit-wise operations they don’t have the same
priority the keywords do, so you might have to use parentheses:
(count(this.children) > 0) & (count(this.children) < 4).

You may use the function-like operators and_,
or_, and not_ if
you’re not comfortable using the operators.

Moreover you can’t use the idiom a < b < c in expressions because Python
converts such a construction to a < b and b < c and there’s no way we
can hook into and.

For the same reason you can’t use in, and isinstance in
expressions. Python always convert those expressions to boolean and this is
not what we need in the context of the expression language.

The role of the query language and query translators

So far, we have shown how the syntax of the query language looks, and we have
indicated the intended meaning of the constructions. However, xotl.ql does
not enforce any particular interpretation on the queries since the whole
meaning of queries depends on the semantics of the objects models in place.

For instance, given a data model that honors transitive relations such as is
(physically) located in between places; if you have that B is located in A
and that C is located in B, then querying for every place that is located in
A, should return both B and C.

One might encode such a query in a program like the following:

locations = these(place for place in this if place.located_in(A))

It’s expected that such a query will look up in the all the containment tree
derived form the located-in relation, to fetch all places which are inside
A either directly or indirectly.

In this model, just the use of located_in(A) would imply a recursive
computation; and such knowledge comes only from the object/store model and not
the query language by itself. Other models (for instance the relational model)
might not find more than directly related objects.

That’s why in order to execute queries one must use a query
translator with enough knowledge of the object model and of the system
configuration (specially how to communicate with storage systems).

xotl.ql won’t provide production quality translators. Instead other packages
will be released that implement translators and assist their configuration into
other frameworks. For instance, it’s planned to write a package that contains a
translator for SQLAlchemy [http://pypi.python.org/pypi/sqlalchemy] models and another package with a Pyramid [http://pypi.python.org/pypi/pyramid] Tween
that glues this translator with Pyramid.

Nevertheless the module xotl.ql.translation.py does contains an
implementation of a translator that fetches objects from the Python’s
memory. And we also provide utilities for translation in
xotl.ql.translation.

Retrieving objects

If a query translator is setup, then you may iterate
over the query itself to fetch objects:

somequery = these(parent for parent in this)
for parent in somequery:
 print(parent)

If no translator is configured an exception is raised.

Configuring a default translator for the context allows to keep things simple
at the data-consuming level. However, this by no means the only way to retrieve
data from a query. You could use a translator directly instead of using the
“default” one. See more on Translating query objects.

Footnotes

	[1]	Querying objects in a distributed environment is a no-go for
performance issues. However the language by itself is
possible. One may maintain indexes for distributed systems,
though; and the queries are run against these indexes.

	[2]	When we started this project we thought we could have queries
without having to call a function/class, just comprehensions and
the this symbol. Unfortunately, we have had
to add these callable so that all pieces of
a query were properly captured.

If you are interested in the inner workings of xotl.ql, see
Internal details of the processing of query expressions.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 The Expressions Language

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

The Expressions Language

This module provides the building blocks for creating expression trees. It provides several classes that represent the operations
themselves, this classes does not attempt to provide anything else than what
it’s deem needed to have an Abstract Syntax Tree (AST).

Each expression is represented by an instance of an
xotl.ql.expressions.ExpressionTree. An expression tree has two core
attributes:

	The operation attribute contains
a reference to the any of the classes that derive from Operator.

	The children attribute always
contains a tuple with objects to which the operation is applied.

Operation classes should have the following attributes:

	_arity, which can be any of xotl.ql.expressions.N_ARITY,

xotl.ql.expressions.BINARY, or xotl.ql.expressions.UNARY.

	_format, which should be a string that specifies how to format the
operation when str is invoked to print the expression. The format should
conform to the format mini-language as specified in Python’s string module
doc.

For UNARY operations it will be passed a single positional argument. For
BINARY two positional arguments will be passed. N_ARITY is regarded as
function on several arguments (passed one after the other separated by
commas); _format should have a single positional argument that will be
replaced by the list of arguments.

	_method_name, should contain a string (not unicode unless you’re sure) with
the name of the method that is be invoked on the (first) operand of the
expression when this operation is used.

This attribute simply maps operations to methods. This allows us to make
expressions “composable”, since expression trees will always have a “default”
implementation of those methods, that normaly just buils another expression
tree with it’s op set to the operation.

This module provides operations for several of the commonly used in expression:
arithmetical, testing for containment, and others. So, expression are
composable:

>>> expr1 = eq(1, 2) & eq(2, 3)
>>> str(expr1)
'(1 == 2) and (2 == 3)'

Note

We use & for the and operation, and | for the or operation.
The “real” interpretation of “and” and “or” is not given in this
module, but is left to the “compilation” phase. They may be regarded
as logical or bitwise operations as well.

Objects in expressions

In order to have any kind of objects in expressions, we provide a very
ligth-weight transparent wrapper xotl.ql.expressions.q. This simple
receives an object as it’s wrapped, and pass every attribute lookup to is
wrapped object but also implements the creation of expressions with the
supported operations. The expression above could be constructed like:

>>> expr2 = (q(1) == q(2)) & (q(2) == q(3))
>>> str(expr2)
'(1 == 2) and (2 == 3)'

The class q contains more detailed information.

Contexts of execution

Since the default operations of Python are “trapped” to build other expressions
as shown with:

>>> expr1 == expr2
<expression '...' at 0x...>

it’s difficult to test whether or not two expressions are equivalent, meaning
only that they represent the same AST and not its semantics. We use the simple
contexts of execution provided by xoutil.context to enter “special”
modes of execution in which we change the semantic of an operation.

Since q is based on xoutil.proxy we use the same context name
the proxy module uses for similar purposes, i.e, to enter a special context in
which operation don’t create new expression but try to evaluate themselve; such
a context is the object UNPROXIFING_CONTEXT:

>>> from xoutil.context import context
>>> from xoutil.proxy import UNPROXIFING_CONTEXT
>>> with context(UNPROXIFING_CONTEXT):
... expr1 == expr2
True

Warning

We only provide implementations for __eq__ and __ne__, other operations
will probably (but not always) fail in this context:

>>> with context(UNPROXIFING_CONTEXT):
... q(1) + q(2) + expr1
Traceback (most recent call last):
 ...
RuntimeError: ...

Only use == or != in this context!

The case for q-objects

q-objects are just meant to provide a simple wrapper for objects that don’t
support the operations of expressions directly. They are not meant to be used
everywhere. Notice that expressions support most common operations and their
“reverses”, so sometimes q-objects are not required:

>>> 1 + q(1)
<expression '1 + 1' at 0x...>

For the time being, we keep the q-objects as they allows to test our expression
language. But, in time, we may refactor this class out of this module.

	
class xotl.ql.expressions.q(target)

	A light-weight wrapper for objects in an expression:

>>> print(repr(1 + q(1)))
<expression '1 + 1' at 0x...>

q wrappers are quite transparent, meaning that they will proxy every
supported operation to its wrapped object.

q-objects are based upon the xoutil’s module proxy module; so you should read its documentation.

q-objects add support for building expressions using the wrapped object.
But q-objects get out of the way and do not insert them selves into the
expressions they build. For instance:

>>> age = q(str('age'))
>>> type(age) is q
True

>>> expr = age + q(10)
>>> [type(child) for child in expr.children]
[<...'str'>, <...'int'>]

This class implements xotl.ql.interfaces.IExpressionCapable.

The _xotl_target_ protocol for expressions

Expression trees support a custom protocol for placing operands inside
expressions. If any operand’s class implements a method _xotl_target_ it
will be called with the operand as its unique argument, and use its result in
place of the operand:

>>> class X(object):
... @classmethod
... def _xotl_target_(cls, self):
... return 1

>>> q(1) + X()
<expression '1 + 1' at 0x...>

Note

This protocol only works if _xotl_target_ is either an attribute (method,
a classmethod or a staticmethod) defined in the class object (or its
metaclass). It won’t work if the _xotl_target_ method is injected into the
instance.

This is the protocol used by q-objects to get themselves out of expressions.

About the operations supported in expression

Almost all normal operations are supported by expressions (please refer to the
API for the expression language for the complete
list of supported operations and
functions). xotl.ql.expressions.ExpressionTree uses the known
python protocols to allow the composition of expressions
using an natural (idiomatic) form, so:

expression <operator> object

are the suggested form for constructing expressions. Doing so, allows other
objects (see the core module for example) to engage
into expressions and keeps the feeling of naturality.

The <operator> can be any of the supported operations, i.e:

	All the arithmetical operations, except pow(a, b, modulus), but a ** b
is supported.

	The &, |, and ^ operations. This are proposed to replace the
and, or, and xor logical operations; but its true meaning depends on
the expression translator.

	All the comparison operations: <, >, <=, >=, ==, and
!=.

	The unary operators for abs, +, -, and ~. We don’t
support len. The ~ is proposed to encode the not logical operator;
but its true meaning depends of the used query translator.

	
class xotl.ql.expressions.OperatorType(type)

	The type of operators in an expression.

This is the metaclass for the class xotl.ql.expressions.Operator it
automatically injects documentation about
xotl.ql.interfaces.ISyntacticallyReversibleOperation and
xotl.ql.interfaces.ISynctacticallyCommutativeOperation, so there’s
no need to explicitly declare which interfaces the class support in every
operator class.

	
method_name

	The name of the method that is called to get the result of the
operation.

Python has a several protocols to invoke method in-place of operators
in expressions. See the Python’s data model
<http://doc.python.org/reference/datamodel.html> for more information.

This is the name of the method that is invoked by Python when the
operation is found in a expression.

See also FunctorOperator for more information.

	
class xotl.ql.expressions.Operator

	The base class of every operation that may involved in a expression.

Subclasses of this class are rarely instantiated, instead they are used
in ExpressionTree.operation to indicate the operation that is
perform to the operands.

Classes derived from this class should provide directly the interface
xotl.ql.interfaces.IOperator.

	
class xotl.ql.expressions.FunctorOperator

	The base class for operations that are invoked explicitly by the
programmer.

Some operations like (count, is_a, etc.) are not called
implicitly by Python and you must use them as “functions”. So any
customization you make to an object’s method for the expression are not
invoked by Python implicitly as it does for other operators.

For instance, if you write a class X that defines both a __add__ and
count methods, when an expression instance_of_X + y is parsed, Python
will call the __add__ method and you may customize the way expressions
are done for object of type X. But when count(instance_of_X) is
parsed Python won’t call the count method of X.

This class adds such behavior. Operations that are always invoked
explicitly by the programmer instead of Python’s implicit invocation
protocol, should inherit from this class. We take steps to prevent
infinity recursion if an operand implements a protocol but calls the
operator to build the final expression.

	
class xotl.ql.expressions.ExpressionTree(operation, *children, **named_children)

	A representation of an expression as an expression tree.

Each expression has an op attribute that should be a class derived
from Operator, and a children attribute that’s a tuple of the
operands of the expression.

Some operators support named_children, for instance, the call function may be passed a variable number of positional
arguments (children) and a variable number of keyword argument (named
children).

This class implements the interface
xotl.ql.interfaces.IExpressionTree.

	
operation

	The operator class of this expression. It should be a subclass of
Operator

	
children

	A tuple that contains the operands involved in the expression.

	
named_children

	A dictionary that contains the named operands in the expression.

Extending the expressions language

The expression language may be extended by introducing new
function object operators. For
instance, one may need an sin function:

>>> from xotl.ql.expressions import FunctorOperator
>>> class SinFunction(FunctorOperator):
... '''
... The ``sin(arg)`` operation.
... '''
... _format = 'sin({0})'
... _arity = UNARY
... _method_name = b'_sin'
>>> sin = SinFunction

Given such a definition, now the sin callable produces expressions:

>>> sin(0)
<expression 'sin(0)' ...>

Furthermore, you can even customize the way the expression is built by
implementing the _sin method on some special object:

>>> class ZeroObject(object):
... def _sin(self):
... return sin(360)

>>> zero = ZeroObject()
>>> sin(zero)
<expression 'sin(360)' ...>

The protocol for resolving ambiguous signatures

Functions like all_
any_ could have several signatures, one of them
being a subquery-like expression. In order to have chance to process the
subquery if the operator implements the _resolve_arguments method (see
xotl.ql.expressions.ResolveSubQueryMixin) it will be called before any
other processing is done to children (like the target protocol explained
before).

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 The query language and the this object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

The query language and the this object

The basic query language uses generator expressions to express both the SELECT
part and FILTER part of a query.

In a query expression (generator expression) the xotl.ql.core.this objects
stand for the entire universe of objects unless otherwise restricted by filter
expressions. For instance:

>>> from xotl.ql import this, these, thesefy
>>> from xotl.ql.expressions import count, is_instance

>>> class Person(object):
... pass

>>> parents = these(parent
... for parent in this
... if is_instance(parent, Person) & parent.children)

might be used to select every object parent that has an attribute
children that is a non-empty sequence of objects.

The this object may also appear in expressions meaning “the current
object” when those expressions take a predicative form. For instance, following
the third interpretation for all_:

>>> from xotl.ql.expressions import all_
>>> parents = (parent for parent in this
... if all_(parent.children, this.age > 10))

meaning to retrieve all parents whose children are all at least 10 years
(supposedly). In this case, the second use of the this object would represent
each child yielded by parent.children. Admittedly, in this particular example
using the first interpretation for all_ would be more readable:

>>> parents = (parent for parent in this
... if all_(child.age > 10 for child in parent.children))

Warning

It’s up to the Query Translators to make any
sense of this query. Some translator may reject the query because it’s not
computable to the target storage system or just because it has some
operation that is not supported.

For instance: if the target is a CouchDB [http://couchdb.apache.org/] database, the is_instance operation might be rejected
because CouchDB lacks types. Alternatively, a query translator for CouchDB
might have a configuration option to allow translation of this operation
to a document._type == type; where _type is the name of the attribute
that is by convention used in CouchDB to store the objects’ types.

So when writing queries you should check the translators available and their
documentation.

Term instances may be named, thus allowing to select different
objects in a single query. When used in query expressions,
this automatically yields a single uniquely named
Term instance. So, you don’t need to specify a name by your self:

>>> p, c = next((parent.name, child.name) for parent in this
... if count(parent.children) > 0
... for child in parent.children)

In order to have explicitly named instances you may provide a name:

>>> parent, child = this('parent'), this('child')
>>> q = ((p.name, c.name) for p in parent
... if count(p.children) > 0 for c in child)

Providing a name may ease debugging tasks, and clarify log messages.

Note

Notice that if you create an expression outside the context of a
comprehesion you must provide names for instances that refer to
different objects. Otherwise the expression would not express what you
intended. For instance:

>>> from xotl.ql.expressions import in_
>>> parent, child = this, this
>>> expr = in_(child, parent.children)
>>> expr2 = in_(child, this.children)

Both expr and expr2 are semantically equivalent:

>>> with context(UNPROXIFING_CONTEXT):
... expr == expr2
True

And you may see that the “natural” meaning of expr2 entails “objects
that are child of themselves”, and that’s probably not what we intended to
express with expr.

Providing names avoids the confusion:

>>> parent, child = this('parent'), this('child')
>>> expr = in_(child, parent.children)
>>> with context(UNPROXIFING_CONTEXT):
... expr == expr2
False

Order, limits and offsets

So far, the query language presented does not allow for expressing neither
limits, offsets and order-by clauses. these allows you
to pass many keyword arguments, which are kept in the query object returned.

Some of these keyword arguments are considered “reserved” for the purposes of
ordering and partitioning the result of a query. Any other keyword argument
is left as-is in the params attribute
of query objects.

Limits and offsets

To set limits and offsets you may pass the partition keyword argument a
slice object. Every possible combination in python itself is possible here as
well.

Alternatively, you may provide one (or several) of the keyword arguments:
limit, offset and step. These arguments are used then to create the
slice object. If you provide the partition argument, these ones will be
ignored (and a warning will be logged).

Compliant query translators are required to:

	Raise a TypeError if they don’t support partition and one is provided.

	Raise a TypeError if they don’t support any of the partition’s components
that is not None (e.g. a translator may not support a step bigger than 1)

	Document those expectations.

The semantics associated with partition are the same as slices in
Python. Translators may restrict the domain for start, stop and step ,
however they must not change the meaning of any of it’s
components. Particularly, the stop value in slices has not the same meaning
that the clause LIMIT in SQL (at least for PostgreSQL 9.1). LIMIT refers to
an amount of elements to be returned, while stop refers to an index.

Thus, the limit argument to these is not the same as
the stop component of partition. The API documentation that supports the
these signature notes how partition is built from offset, limit
and step.

Translators may, for instance, restrict the use of negative indexes in
partition but must not regard stop as an amount instead of a index.

Expressing order instructions

As with many of the API elements on xotl.ql, the API of the order is still
in flux and may change as we improve on our work. However, this part of the
API is probably the one that will change the most due that is the less
debated to the date.

To instruct a capable query translator to order the result you may pass the
ordering keyword argument to these.

The argument’s type must be a callable (usually a lambda expression) that
receives as many positional arguments as selected elements are in the query and
returns either:

	A single unary expression, i.e. an expression tree of which its top most
operator is one of xotl.ql.expressions.PositiveUnaryOperator or
xotl.ql.expressions.NegativeUnaryOperator.

	A tuple of unary expressions of those.

Collectively those unary expressions are called “ordering expressions” in the
context of the interface xotl.ql.interface.IQueryObject.

Note

What you pass to the ordering argument of these are
not the ordering expressions themselves, but a procedure to build them from
the selection.

What you get in the query’s xotl.ql.interfaces.IQueryObject.ordering
attribute are the ordering expressions as returned by the given procedure.

Nothing more is enforced.

Compliant query translators are required to:

	Treat positive unary expressions as an ascending ordering request.

	Treat negative unary expressions as a descending ordering request.

	Further validate the expressions and raise a TypeError if any expression
violates the type expectations of the translator. This entails the
requirement to clearly document those expectations.

This last requirement is need because the only type check that xotl.ql does
on ordering expressions is that they are unary ones, it is possible to
order by not only by single term expressions, but by more complex ones.

For instance a query may ask for ordering based on the result of the ratio
between the maximum value of an attribute in a sub-collection and other
attribute:

from xotl.ql.expressions import max_
query = these((parent for parent in this),
 ordering=lambda parent: +(max_(child.age for child in parent.children)/parent.age))

But some translators might be unable to correctly translate this kind of
ordering expression; maybe because the storage does not allow it or because the
translation process itself is not designed for such use cases.

Query execution

Note

Before a query could be executed the way described in this section, a
query translator must be configured for the current context (thread
or process; see Configuration of translator).

Query objects are iterable, so fetching objects is a matter of iterating over
the query:

query = these(...)
for selection in query:
 do(something(withthe(selection)))

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Translating query objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Translating query objects

Translation is the process that transforms a query object into a form
feasible for a data store and/or object model to
execute. The result of translating a query object is a query execution
plan.

Query translators are the components responsible for
translation. xotl.ql does not provide production quality translators, but
other packages are planned to have implementation of translators. Nevertheless,
the module xotl.ql.translation.py provides an implementation of naive
translator that matches the Python object model and fetches objects from the
current process memory.

This section is only mostly relevant for translation authors only. It
contains details that are not important for application writers. However,
application writers might profit from these notes in order to better
understand possible exceptions they are facing.

General requirements about translators

Re-usability of execution plans

It is required that translators allow the reuse of execution plans; i.e. once a
query is translated you may execute the plan several times to fetch the objects
that matches the query at the time the plan is executed.

This way one may use the translator only once per query.

In fact xotl.ql.core.QueryObject assumes that the configured translator abides by this requirement to avoid building the
execution plan several times.

Documentation requirements

Translators authors are encouraged to provide as much documentation as
necessary, so that application writers have the guidance they need for writing
queries.

We feel the following information is required in order for a translator
documentation be complete:

	A list of the supported expression operations from the xotl.ql
expression API.

	A list of additionally supported operations, and their related documentation.

	Documentation of functions, classes applications writers may use to access
the translator functionality directly if they have to.

	Additional keyword arguments you may pass to their implementation of
__call__(); the additional
parameters you may pass via
these and how they relate.

	Configuration options you may pass to the translator; and how to instantiate
a translator with those configurations.

Configuration of translator

Configuration of an application is not one of the goals xotl.ql
pursues. That’s the job of frameworks. So this section refers only to the small
amount of assumptions xotl.ql has about getting a configured translator
when it’s needed.

Configuration of an entire system is a complex matter. Even deciding what
configuration is and what is not is an issue that must be well thought.

That been said, the only place where currently xotl.ql does make an
assumption about the configuration is when trying to get an instance of a
query translator. This is done exactly only when you try to iterate
over a query object:

for atom in these(atom for atom in Universe): # <--- here
 classify(atom)

xotl.ql makes use of Zope Component Architecture (ZCA) registration of
components to look for translators.

There are two interfaces which relate to this job:

	xotl.ql.interfaces.IQueryConfigurator

	xotl.ql.interfaces.IQueryTranslator

When trying to get a translator, xotl.ql does the following:

	First it looks if there is an instance of IQueryConfigurator in the ZCA
global registry.

If found, it will call its
get_translator() passing the
query.

	If there’s no configurator then it will try to look for an instance of a
IQueryTranslator in the global registry.

If this step also fails a ComponentLookupError exception will be raised.

	If any of the previous steps does return a translator, then it will be
called with the current query as its sole positional argument.

The returned query execution plan will be cached by the query object
to avoid having to look for translator and perform the translation
again. [1]

If you’re not comfortable using ZCA, you avoid at all; just don’t iterate
directly over a query object. Translator will probably have APIs for direct
use. For instance, our toy py translator provides
the function naive_translation() that is the one
that performs the translation. Many of our tests use this function instead of
iterating over query objects.

Best practices for configurators

Configurators should follow the motto “be liberal about what you may get”
[2]. This means that they should make the least amount of
assumptions possible for any argument they might receive.

Here are some ideas:

	If you expect a keyword argument that should contain a class/function and you
receive a string, try to load it as dotted name.

This is to allow INI configuration files.

	Whenever possible log a BIG warning instead of raising an exception.

Using the Pyramid’s registry

If you need to use the Pyramid’s ZCA application registry, you should use the
hook_zca() of the pyramid.config.Configurator class, like this:

config = Configurator(**settings)
config.hook_zca()
config.registry.registerUtility(your_translator, IQueryTranslator)

This is not needed, though. However, you must make sure to register your
translator for each WSGI application instance you have.

It is encouraged that translator authors also write mediators that glue their
translator with a given framework. It is also encouraged that such mediators be
distributed separately from the translator itself. For instance, you might
write a Pyramid Tween that glues your translator with Pyramid’s registry.

	[1]	This cache is local to the query object, if the later is discarded
the plan will also be discarded (unless there’s a bug somewhere
else, for instance the translator could keep its own cache that is
getting too big.)

	[2]	”... and be conservative about what you provide”, but, hey!,
they are required to return a translator.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 xotl.ql.core - API for the query language

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

xotl.ql.core - API for the query language

External API for the query language

In this section we give the details of the (external) query API. For the
internal query API, used to those that need to build extensions of the query
language, please refer to query-api.

As we’ve said, at the core of the Query Language is the this object, whose
type is a subclass of the class Term explained below:

	
xotl.ql.core.this(name, **kwargs)

	The this object is a unnamed universal “selector” that may be placed in expressions and queries

	
class xotl.ql.core.Term(name=None, **kwargs)

	The type of the this symbol: an unnamed object that may placed in
queries and whose interpretation depends on the query context and the
context in which this symbol is used inside the query itself.

	Parameters:	
	name – The name of the term. It sould be a valid Python identifier.

	parent – Another ITerm instance this term is “drawn”
from.

	binding – The IGeneratorToken this term is bound to in a
query context.

This class implements xotl.ql.interfaces.ITerm

	
name

	Term instances may be named in order to be distinguishable from each
other in a query where two instances may represent different objects.

	
parent

	Term instances may have a parent these instance from which they
are to be “drawn”. If fact, only the pair of attributes (parent,
name) allows to distinguish two instances from each other.

	
root_parent

	The top-most parent of the instance or self if it has no parent.

	
__iter__()

	Yields a single instance of a bound term that is a clone of the current.

This allows an idiomatic way to express queries:

query_expression = ((parent, child)
 for parent in this('parent')
 for child in parent.children)

See these.

	
clone(**kwargs)

	Clones the current term with possible variations.

If keyword arguments are passed those will be used to modify the cloned
term.

	
class xotl.ql.core.these(generator, **kwargs)

	An alias to the QueryObject, you may use either as a constructor
for query objects. However we use both names for
different purposes:

	We use these with the (query expression, ...) signature only to
get a query object from a query expression in a style that
looks like a function call.

	We use QueryObject without any arguments to build a bare
query object that may be filled afterward.

Note

When providing any arguments the only valid signature is the one showed
in this page. If you pass any arguments, you must ensure that:

	There is a single positional argument of type GeneratorType

	Any other argument is a keyword argument.

Any other signature raises a TypeError. See
_QueryObjectType.build_from_generator() for more.

	
class xotl.ql.core.QueryObject

	Represents a query. See xotl.ql.interfaces.IQueryObject.

	
class xotl.ql.core.GeneratorToken(expression)

	Represents a token in the syntactical tree that is used as
generator. See xotl.ql.interfaces.IGeneratorToken.

	
class xotl.ql.core._QueryObjectType

	
	
build_from_generator(comprehension, **kwargs)

	Builds a query object from a query expression given
by a generator object.

	Parameters:	
	comprehension (GeneratorType) – The query expression to be processed.

	ordering – A function that receives as many arguments as there
are selections in the query and returns a tuple of ordering
expressions.

	partition (slice or None) – A slice (start, stop, step) that represents the
part of the result set to be retrieved.

You may express this by individually providing the
arguments offset, limit and step.If you provide
the partition argument, those will be ignored (and
a warning will be logged).

If partition is not provided and any of the
alternatives is, then if limit is not None the
stop component of partition is calculated by
step(limit + offset).

	offset (Non-negative index.) – Individually express the start of the partition
parameter.

	limit (Positive amount.) – Combined with offset and step express the stop
component of the partition parameter.

	step (Positive integer.) – Individually express the step of the partition
parameter.

	Returns:	An IQueryObject instance that
represents the QueryObject expressed by the comprehension
and the kwargs.

	Return type:	QueryObject

All others keyword arguments are copied to the
params attribute, so that
query translators may use them.

Note

The step argument could change the actual amount of elements
specified by limit because it is regarded as a stepping after a
continous chunk of items is selected.

This argument is not always directly translatable to data stores. It
is provided in the believe that translators may complement the data
stores natural behavior and do the stepping by themselves.

Utilities

	
xotl.ql.core.thesefy(cls)

	Takes in a class and injects it an __iter__ so that the class may take
part of this in query expressions.

>>> @thesefy
... class Entity(object):
... def __init__(self, **kwargs):
... for k, v in kwargs.items():
... setattr(self, k, v)
>>> q = these(which for which in Entity if which.name.startswith('A'))

The previous query is roughly equivalent to:

>>> from xotl.ql.expressions import is_instance
>>> q2 = these(which for which in this
... if is_instance(which, Entity)
... if which.name.startswith('A'))

This is only useful if your real class does not have a metaclass of its own
that does that already. However, if you do have a metaclass with an
__iter__ method it must return a generator object: returning anything
else and “thesefying” is a TypeError.

Optionally (useful for debugging purposes only) you may pass a name to the
decorator that will be used as the name for the internally generated
Term instance:

>>> @thesefy('Entity')
... class Entity(object):
... pass

>>> q = these(which for which in Entity if which.name.startswith('A'))
>>> q.selection
(<this('Entity') at 0x...>,)

This way it’s easier to create tests.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 xotl.ql.expressions - API for the expression language

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

xotl.ql.expressions - API for the expression language

	
class xotl.ql.expressions.EqualityOperator

	The class of a == b [== c], expressions:

>>> e = and_(eq(1, 2), eq(4, 5))
>>> str(e)
'(1 == 2) and (4 == 5)'

Attributes:

	arity: BINARY

	_method_name: “__eq__”

	_format: “{0} == {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISynctacticallyCommutativeOperation.

	
xotl.ql.expressions.eq

	alias of EqualityOperator

	
class xotl.ql.expressions.NotEqualOperator

	The expression a != b:

>>> e = ne(ne(1, 2), ne(4, 5))
>>> str(e)
'(1 != 2) != (4 != 5)'

Attributes:

	arity: BINARY

	_method_name: “__ne__”

	_format: “{0} != {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISynctacticallyCommutativeOperation.

	
xotl.ql.expressions.ne

	alias of NotEqualOperator

	
class xotl.ql.expressions.LogicalAndOperator

	The expression a & b [& c]:

>>> e = and_(and_(1, 2), and_(4, 5))
>>> str(e)
'(1 and 2) and (4 and 5)'

Attributes:

	arity: BINARY

	_method_name: “__and__”

	_format: “{0} and {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.and_

	alias of LogicalAndOperator

	
class xotl.ql.expressions.LogicalOrOperator

	The expression a or b [or c]:

>>> e = or_(or_(1, 2), or_(4, 5))
>>> str(e)
'(1 or 2) or (4 or 5)'

Attributes:

	arity: BINARY

	_method_name: “__or__”

	_format: “{0} or {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.or_

	alias of LogicalOrOperator

	
class xotl.ql.expressions.LogicalXorOperator

	The expression a xor b [xor c]:

>>> e = xor_(xor_(1, 2), xor_(3, 4))
>>> str(e)
'(1 xor 2) xor (3 xor 4)'

Attributes:

	arity: BINARY

	_method_name: “__xor__”

	_format: “{0} xor {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.xor_

	alias of LogicalXorOperator

	
class xotl.ql.expressions.LogicalNotOperator

	The logical !a expression:

>>> e = not_(and_(1, 2))
>>> str(e)
'not (1 and 2)'

Attributes:

	arity: UNARY

	_method_name: “__invert__”

	_format: “not {0}”

	
xotl.ql.expressions.not_

	alias of LogicalNotOperator

	
xotl.ql.expressions.invert

	alias of LogicalNotOperator

	
class xotl.ql.expressions.AdditionOperator

	The expression a + b [+ c]:

>>> e = add(add(1, 2), add(3, 4))
>>> str(e)
'(1 + 2) + (3 + 4)'

Attributes:

	arity: BINARY

	_method_name: “__add__”

	_format: “{0} + {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.add

	alias of AdditionOperator

	
class xotl.ql.expressions.SubstractionOperator

	The expression a - b.

Attributes:

	arity: BINARY

	_method_name: “__sub__”

	_format: “{0} - {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.sub

	alias of SubstractionOperator

	
class xotl.ql.expressions.DivisionOperator

	The expression a / b.

Attributes:

	arity: BINARY

	_method_name: “__div__”

	_format: “{0} / {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.div

	alias of DivisionOperator

	
xotl.ql.expressions.truediv

	alias of DivisionOperator

	
class xotl.ql.expressions.MultiplicationOperator

	The expression a * b [* c]:

>>> e = mul(mul(1, 2), mul(3, 4))
>>> str(e)
'(1 * 2) * (3 * 4)'

Attributes:

	arity: BINARY

	_method_name: “__mul__”

	_format: “{0} * {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.mul

	alias of MultiplicationOperator

	
class xotl.ql.expressions.LesserThanOperator

	The expression a < b [< c]:

>>> e = and_(lt(1, 2), lt(3, 4))
>>> str(e)
'(1 < 2) and (3 < 4)'

Attributes:

	arity: BINARY

	_method_name: “__lt__”

	_format: “{0} < {1}”

	
xotl.ql.expressions.lt

	alias of LesserThanOperator

	
class xotl.ql.expressions.LesserOrEqualThanOperator

	The expression a <= b [<= c]:

>>> e = le(le(1, 2), le(3, 4))
>>> str(e)
'(1 <= 2) <= (3 <= 4)'

Attributes:

	arity: BINARY

	_method_name: “__le__”

	_format: “{0} <= {1}”

	
xotl.ql.expressions.le

	alias of LesserOrEqualThanOperator

	
class xotl.ql.expressions.GreaterThanOperator

	The expression a > b [> c]:

>>> e = gt(gt(1, 2), gt(3, 4))
>>> str(e)
'(1 > 2) > (3 > 4)'

Attributes:

	arity: BINARY

	_method_name: “__gt__”

	_format: “{0} > {1}”

	
xotl.ql.expressions.gt

	alias of GreaterThanOperator

	
class xotl.ql.expressions.GreaterOrEqualThanOperator

	The expression a >= b [>= c]:

>>> e = ge(ge(1, 2), ge(3, 4))
>>> str(e)
'(1 >= 2) >= (3 >= 4)'

Attributes:

	arity: BINARY

	_method_name: “__ge__”

	_format: “{0} >= {1}”

	
xotl.ql.expressions.ge

	alias of GreaterOrEqualThanOperator

	
class xotl.ql.expressions.ContainsExpressionOperator

	The b contains a expression:

>>> e = contains(('abc', 'abcdef'), 'abc')
>>> print(str(e))
contains(('abc', 'abcdef'), abc)

Attributes:

	arity: BINARY

	_method_name: “_contains_”

	_format: “contains({0}, {1})”

	
xotl.ql.expressions.contains

	alias of ContainsExpressionOperator

	
class xotl.ql.expressions.IsInstanceOperator

	The a is_a B operator:

>>> e = is_a(1, int)
>>> str(e)
"is_a(1, <...'int'>)"

Attributes:

	arity: BINARY

	_method_name: “_is_a”

	_format: “is_a({0}, {1})”

	
xotl.ql.expressions.is_a

	alias of IsInstanceOperator

	
xotl.ql.expressions.is_instance

	alias of IsInstanceOperator

	
class xotl.ql.expressions.FloorDivOperator

	The 1 // 2 operator where // is always the floordiv operator:

>>> e = floordiv(4, 3)
>>> str(e)
'4 // 3'

Attributes:

	arity: BINARY

	_method_name: “__floordiv__”

	_format: “{0} // {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.floordiv

	alias of FloorDivOperator

	
class xotl.ql.expressions.ModOperator

	The 1 % 2 operator:

>>> e = mod(4, 3)
>>> str(e)
'4 mod 3'

Attributes:

	arity: BINARY

	_method_name: “__mod__”

	_format: “{0} mod {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.mod

	alias of ModOperator

	
class xotl.ql.expressions.PowOperator

	The 1**2 operator:

>>> e = pow_(4, 3)
>>> str(e)
'4**3'

Attributes:

	arity: BINARY

	_method_name: “__pow__”

	_format: “{0}**{1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.pow_

	alias of PowOperator

	
class xotl.ql.expressions.LeftShiftOperator

	The 2 << 1 operator:

>>> e = lshift(2, 1)
>>> str(e)
'2 << 1'

Attributes:

	arity: BINARY

	_method_name: “__lshift__”

	_format: “{0} << {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.lshift

	alias of LeftShiftOperator

	
class xotl.ql.expressions.RightShiftOperator

	The 2 >> 1 operator:

>>> e = rshift(2, 1)
>>> str(e)
'2 >> 1'

Attributes:

	arity: BINARY

	_method_name: “__rshift__”

	_format: “{0} >> {1}”

Interface(s):

This class directly provides xotl.ql.interfaces.ISyntacticallyReversibleOperation.

	
xotl.ql.expressions.rshift

	alias of RightShiftOperator

	
class xotl.ql.expressions.LengthFunction

	The length(something) operator:

>>> e = length(487873)
>>> str(e)
'length(487873)'

Note

length is intended to be applied to non-collection values that
have kind of a magnitude, like strings. It’s not intended to be applied
to collection of objects; use count for those cases.

Translators may rely on this rule to infer
the type of the argument passed to either length or
count.

Attributes:

	arity: UNARY

	_method_name: “length”

	_format: “length({0})”

	
xotl.ql.expressions.length

	alias of LengthFunction

	
class xotl.ql.expressions.CountFunction

	The count(something) operator:

>>> e = count((4, 8, 7, 8, 73))
>>> str(e)
'count((4, 8, 7, 8, 73))'

Note

count is intended to be applied to collections. It’s not
supposed to be applied to non-collection values like strings; use
length for those cases.

Translators may rely on this rule to infer
the type of the argument passed to either length or
count.

Attributes:

	arity: UNARY

	_method_name: “_count”

	_format: “count({0})”

	
xotl.ql.expressions.count

	alias of CountFunction

	
class xotl.ql.expressions.PositiveUnaryOperator

	The +56 unary operator:

>>> e = pos(34)
>>> str(e)
'+34'

Attributes:

	arity: UNARY

	_method_name: “__pos__”

	_format: “+{0}”

	
xotl.ql.expressions.pos

	alias of PositiveUnaryOperator

	
class xotl.ql.expressions.NegativeUnaryOperator

	The -56 unary operator:

>>> e = neg(34)
>>> str(e)
'-34'

Attributes:

	arity: UNARY

	_method_name: “__neg__”

	_format: “-{0}”

	
xotl.ql.expressions.neg

	alias of NegativeUnaryOperator

	
class xotl.ql.expressions.AbsoluteValueUnaryFunction

	The abs(56) unary operator:

>>> e = abs_(neg(43))
>>> str(e)
'abs((-43))'

Attributes:

	arity: UNARY

	_method_name: “__abs__”

	_format: “abs({0})”

	
xotl.ql.expressions.abs_

	alias of AbsoluteValueUnaryFunction

	
class xotl.ql.expressions.AllFunction

	The representation of the all function.

There are three possible interpretations/syntaxes for all_():

	It takes an expression (probably a subquery) and returns true only if
every object is true:

all_(age > 10 for age in ages)

	takes several objects and evaluates them all (no subqueries):

>>> ages = (1, 2, 3, 4, 5)
>>> expr = all_(*ages)
>>> str(expr)
'all(1, 2, 3, 4, 5)'

	takes two arguments: the first is a “generator” (see the
xotl.ql.core module) and the second a predicate:

>>> from xotl.ql.core import this
>>> expr = all_(this, this.age > 10)

Warning

There’s no way to syntactically (at the level on which one could do
normally in Python) to distiguish the last two cases from each other; so
translators may further restrict these interpretations.

Attributes:

	arity: N_ARITY

	_method_name: “all_”

	_format: “all({0})”

	
xotl.ql.expressions.all_

	alias of AllFunction

	
class xotl.ql.expressions.AnyFunction

	The representation of the any function. As with all_ three
analogous interpretations are possible. For instance:

>>> ages = [1, 2, 3, 4, 5]
>>> expr = any_(age > 10 for age in ages)
>>> str(expr)
'any(<generator object...>)'

Attributes:

	arity: N_ARITY

	_method_name: “any_”

	_format: “any({0})”

	
xotl.ql.expressions.any_

	alias of AnyFunction

	
class xotl.ql.expressions.SumFunction

	Represents the sum() function.

As with all_ it might have several syntaxes and
interpretations.

Attributes:

	arity: N_ARITY

	_format: “sum({0})”

	
xotl.ql.expressions.sum_

	alias of SumFunction

	
class xotl.ql.expressions.MinFunction

	A function that takes an expression and represents the minimun of such
values over the collection.

There are two possible syntaxes/interpretations for min_():

	A single argument is passed which represents a collection:

>>> age = [1, 2, 3, 4, 5]
>>> min_(age)
<expression 'min([1, 2, 3, 4, 5])' ...>

This syntax allows complex expressions like:

>>> from xotl.ql.core import this
>>> min_(child.age for child in this) > 5
<expression '(min(...)) > 5' ...>

	Several arguments are passed and the minimum of all is returned:

>>> min_(1, 2, 3, 4, 5)
<expression 'min(1, 2, 3, 4, 5)' ...>

Note

Translators may take the use of either
min_() or max_() functions over a single argument as a hint
to the type of the argument (in this case a collection of other stuff
according to the first interpretation).

Such an assumption should be noted in the documentation of the
translator.

Attributes:

	arity: N_ARITY

	_method_name: “min_”

	_format: “min({0})”

	
xotl.ql.expressions.min_

	alias of MinFunction

	
class xotl.ql.expressions.MaxFunction

	A function that takes an expression and represents the maximum of such
values over the collection.

Like min_() there are two possible interpretations for max_(),
they are analogous.

Attributes:

	arity: N_ARITY

	_method_name: “max_”

	_format: “max({0})”

	
xotl.ql.expressions.max_

	alias of MaxFunction

	
class xotl.ql.expressions.InvokeFunction

	A function to allow arbitary function calls to be placed inside
expressions. It’s up to you that such functions behave as expect since is
unlikely that they can be translated. For
instance:

>>> ident = lambda who, **kw: who
>>> expr = call(ident, 1, a=1, b=2)
>>> str(expr)
'call(<function <lambda> ...>, 1, a=1, b=2)'

Attributes:

	arity: N_ARITY

	_method_name: “invoke”

	_format: “call({0}{1})”

	
xotl.ql.expressions.call

	alias of InvokeFunction

	
xotl.ql.expressions.invoke

	alias of InvokeFunction

	
class xotl.ql.expressions.AverageFunction

	The avg(*args) operation. There’re two possible interpretations:

	A single argument (a collection) is passed and the average for each
element is computed:

avg(person.age for person in this)

	Several arguments are passed:

avg(1, 2, 3, 5)

Attributes:

	arity: N_ARITY

	_method_name: “_avg”

	_format: “avg({0})”

	
xotl.ql.expressions.avg

	alias of AverageFunction

	
class xotl.ql.expressions.NewObjectFunction

	The expression for building a new object.

>>> new(object, a=1, b=2)
<expression 'new(<...'object'>, a=1, b=2)' ...>

Attributes:

	arity: N_ARITY

	_method_name: “_newobject”

	_format: “new({0}{1})”

	
xotl.ql.expressions.new

	alias of NewObjectFunction

Resolving signatures like any_ does

	
class xotl.ql.expressions.ResolveSubQueryMixin

	Implements a resolution of subqueries.

If an operation receive a single positional that is generator object, it
will be regared as a subquery.

	
classmethod _resolve_arguments(*children, **kwargs)

	Resolves the first and only positional argument as a sub-query by
calling these.

If there is more than one positional argument, or even one keyword
argument, or the first argument is not a generator object; then it
leaves all the arguments the same.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 xotl.ql.interfaces - API Interfaces

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

xotl.ql.interfaces - API Interfaces

This documents list all the interfaces that altogether form the API of
xotl.ql.

External API

This part of the API is that must freeze when the first stable release of
xotl.ql is to be released.

Query objects interfaces

Query objects are represented by objects implementing
the IQueryObject below.

	
interface xotl.ql.interfaces.IQueryObject

	A query object.

This objects captures a query by its selection, filters and generator
tokens, and also provides ordering and partitioning features.

	
selection

	Either a tuple/list of ITerm or IExpressionTree instances; or a single ITerm/IExpressionTree.

	
tokens

	A (probably unordered) list of generator
tokens that occurs in the query.

When a query expression is processed to
create a query object, at least one
generator token is created to represent a
single, named “location” from where objects are
drawn. However a query expression may have many
such locations. For instance in the query:

these((book, author)
 for book in this
 for author in book.authors)

There are two generator tokens: a) this and b)
book.authors. Those tokens relate to the FROM, and
possibly JOIN, clauses of the SQL language.

From the point of view of the query these tokens are
just names, how to use those names to interpret the
query is a task that is left to query translators.

	
filters

	A tuple of IExpressionTree instances that represent the WHERE clauses. They are logically and-ed.

	
ordering

	A tuple of ordering expressions.

	
partition

	A slice object that indicates the slice of the entire collection to be returned.

	
params

	A dict containing other arguments to the query. Some query translators may make use of these to better decide how to translate the query. For instance, you may want have an OUTER JOIN, instead of a INNER JOIN generated, and so on. See these.

	
__iter__()

	Queries are iterable.

If a transtalor is configured in the default
ZCA component registry, this method will return the result of invoking
a plan.

Note

This method is allowed to cache the execution plan, so changing the
configured default translator might not take effect without
rebuilding the query object.

	
interface xotl.ql.interfaces.IGeneratorToken

	In the query object, a single generator token.

A generator token is a wrapper of the expression that is used inside a
query object as a named location from which to draw objects. It
relates to the FROM clause in SQL, and to the <- operation in UnQL
[UnQL].

Todo

Currently we only support ITerm instances as generators, since
allowing the next protocol directly over query objects impedes using them as subqueries like in:

q1 = these((a, b) for a in this for b in a.places)
q2 = these(strformat('{0} has place {1}', a, b) for (a, b) in q1)

The only way to include it would be by manually wrapping with a kind of
query() function:

q2 = these(strformat('{0} has place {1}', a, b) for (a, b) in query(q1))

If this were to be allowed then a generator token could be any
type expression that may be regarded as collection of objects:

	ITerm instances

	IQueryObject instances.

However, for the time being there’s no such thing as a query()
function.

	
expression

	The instance from which this token was created. Usually a ITerm instance.

Expression language API

	
interface xotl.ql.interfaces.IExpressionCapable

	Objects that are allowed to be in expressions.

	
interface xotl.ql.interfaces.IExpressionTree

	Extends: xotl.ql.interfaces.IExpressionCapable

A representation of an expression tree.

It resembles a reduced AST for simple expressions. The expression tree has
an operation attribute that holds a instance that describes the operation
between the children of this expression.

	
operation

	An object that implements the IOperator interface.

	
children

	A tuple that contains the operands. Operands may be themselves other expression trees.

	
named_children

	This attribute allows to represent the Python
**kwargs idiom in the expressions so that
calling a function (see
invoke) may invoke
represent the invocation of arbitrary python
functions.

	
interface xotl.ql.interfaces.ITerm

	Extends: xotl.ql.interfaces.IExpressionCapable

ITerm instances are meant to represent the whole universe of objects.

These instances take place in expressions to create predicates about
objects, such as the this object in the following expression:

(this.age > 30) & (this.age < 40)

	
name

	The name of the instance.

	
parent

	Another ITerm instance from which self is drawn.

	
__iter__()

	ITerm instances should be iterable. Also this should yield a single
instance of a IBoundTerm. The binding
should be made to an instance of a IGeneratorToken, whose
expression attribute should be the bound term
itself.

	
__getattribute__(attr)

	All ITerm instances support the creation of other instances just
by accessing an attribute this.anyattr.

This means that in order to access other internal attributes of the
instance, an execution context is needed.

	Parameters:	attr – The name of the object to access.

	Returns:	Another ITerm instance whose name is attr and whose parent
is self.

	
interface xotl.ql.interfaces.IBoundTerm

	Extends: xotl.ql.interfaces.ITerm

A term that is bound to a single IGeneratorToken instance.

Binding serves the purpose of identifying the source of a given term in a
query. See Terms versus Tokens for an example.

	
binding

	The instance to which this term is bound to

	
interface xotl.ql.interfaces.IOperator

	A description of an operator

	
_format

	The format string should contain one positional arguments for each of the arguments it expects. Notice this assumes a fixed number of arguments; for the case of operations with a variable number of arguments, it should contain only one positional argument that will be filled with all arguments separated by commas.

	
arity

	One of the classes UNARY, BINARY, or N_ARITY

	
_method_name

	When instantiating an Operation (most likely to build an instance of an IExpressionTree), this method may be called on the first operand to allow customization of how the expression is built. If the first operand does not have this method then an expression with this operator and all operands should be returned.

	
interface xotl.ql.interfaces.ISyntacticallyReversibleOperation

	Operations that follow a “reversed” protocol. Used for BINARY operators.

	
_rmethod_name

	This allows to implement some operation when the first operand does not support it because of TypeError, but the second operand does, i.e: __radd__ for 1 + q(“3”).

	
interface xotl.ql.interfaces.ISynctacticallyCommutativeOperation

	Marks IOperator instances that are syntactically commutative.

This mark applies only to operators == and !=, which Python itself
treats as commutative operations.

In an expression like expr1 == expr2 if the class of the expr1 does
not implements an __eq__ method or returns NotImplemented, Python
fallbacks to call the method __eq__ for expr2.

Notice that Python behaves differently when executing A + B, i.e if A
does not have an __add__, the method looked for in B is __radd__;
i.e. the + operator is not commutative in general (for instance with
strings.)

Both == and != are always commutative. That’s why they need to test for
equivalence in way in which the order operands does not matter.

	
equivalence_test(ones, another)

	Should return True if operation(ones) is equivalent to
operation(another).

Operations like == use this method to ascertain that asking a == b
is the same as asking b == a.

Translation API

	
interface xotl.ql.interfaces.IQueryTranslator

	A query translator.

	
interface xotl.ql.interfaces.IQueryExecutionPlan

	Represents the execution plan for a query.

Since the only actual requirement this interfaces poses is that the
execution plan be callable, this may be implemented with a closure. But
keep in mind that the closure should be reusable in several calls.

Configuration API

	
interface xotl.ql.interfaces.IQueryConfigurator

	A mediator between IQueryObject and the system configuration of
translators.

Internal API

This section describes the internal interfaces used when processing query
expressions in order to build the queries. Documenting this “internal” is
important because we feel will ease the understanding of how xotl.ql works.

	
interface xotl.ql.interfaces.IQueryParticlesBubble

	An object used to capture newly created tokens and expressions that
occur in a query expression, when that query expression is used
to create a query object.

	
capture_part(part)

	Captures an emitted query part.

When a given part is captured, it might replace the lastly previously
emitted parts if either of the following conditions hold:

	The capture part is the same last emitted part.

	The captured part is a term, and the last emitted part is its
parent, then the parent part is replaced by the newly captured part.

	The captured part is an expression and the last emitted part is one
of its children (named or positional).

The previous conditions are cycled while any of them hold against the
particle at the “end” of the particles collection.

Note that in an expression like invoke(some, a > b, b > c,
argument=(c > d)) before the whole expression is formed (and thus the
part that represents it is captured), all of the arguments emitted
particles, so we should remove those contained parts and just keep the
bigger one that has them all.

Note

Checks are done with the is operator and not with ==. Doing
otherwise may lead to undesired results:

these(parent.name for parent in this if parent.name)

If == would be used, then the filter part parent.name would be
lost.

	Parameters:	part (IExpressionCapable) – The emitted query part

	
capture_token(token)

	Captures an emitted token.

When a token is emitted if the last previously created part is a term
that is the same as the IGeneratorToken.expression, then this
last term should be removed from the particles collection.

This is because in a query like:

these((parent, child)
 for parent in this
 for child in parent.children)

The parent.children emits itself as a query part and inmediatly it
is transformed to a token.

	Parameters:	token (IGeneratorToken) – The emitted token

	
parts

	Ordered collection of IExpressionCapable instances that were captured.

	
tokens

	Ordered collection of IGeneratorToken tokens that were captured.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 xotl.ql.translation - Common routines for translation of query objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

xotl.ql.translation - Common routines for translation of query objects

This package comprises:

	Several utilities like cotraverse_expression() that are deemed general
enough to serve the purposes of translation without regards of the target
object model; and

	A module py that contains the implementation of a query
translator that matches the Python’s object model and selects objects in
this space.

Common routines for translation

Exceptions

	
class xotl.ql.translation.TranslationError

	A translation error.

Translators should issue this kind of exception if there is an error in the
query that impedes the translation. The query should not be retried if not
changed.

This class inherits from TypeError. See the expectations regarding
limit and ordering translators must fulfill to be
compliant.

Traversing expressions

The following function is thought to help out the task of traversing a filters
and yield those of interest for the translator (i.e finding the top-most
generator token that is related to a table in a relational model).

	
xotl.ql.translation.cotraverse_expression(*expressions, accept=None)

	Coroutine that traverses expression trees an yields every node that
matched the accept predicate. If accept is None it defaults to accept
only ITerm instances that have a non-None
name.

	Parameters:	
	expressions – Several expression tree objects (or
query objects) to traverse.

	accept – A function that is passed every node found the trees that
must return True if the node should be yielded.

Coroutine behavior:

You may reintroduce both expressions and accept arguments by sending
messages to this coroutine. The message may be:

	A single callable value, which will replace accept immediately.

	A single non-callable value, which will be considered another
expression to process or (if it’s a collection) several expressions.

Notice this won’t make cotraverse_expression to stop considering all
the nodes from previous expressions.

	A tuple consisting in (*expressions, accept) that will be treated like
the previous case: expressions will be en-queued and accept will take
effect immediately.

	A dict that may have exprs and accept keys.

The default accept behavior is to catch all named ITerm
instances in an expression. This might be useful to translators in order
optimize de query plan.

When introducing new expressions via messages to coroutine, it’s guaranteed
that previous expressions will be traversed completely before the new
ones.

Ordering of tokens, terms and expressions

These functions are meant to help to know whether a filter needs to be executed
after a token or not.

Let’s see a query:

these(child
 for parent in this
 for child in parent.children
 if parent.age > 42
 if child.age < 10)

In this case the filter over the age of the parent might be executed before
trying to even loop over its children. So a query translator might take this
fact into account to optimize the query plan.

The following functions are utilities to accomplish this.

	
xotl.ql.translation.get_term_path(term)

	Returns a tuple of all the names in the path to a term.

For example:

>>> from xotl.ql import this
>>> get_term_path(this('p').a.b.c)
('p', 'a', 'b', 'c')

The unnamed term this is treated specially by returning None. For
example:

>>> get_term_path(this.a)
(None, 'a')

	
xotl.ql.translation.get_term_signature(term)

	Returns the path “signature” of a term (or token).

For a bound term the signature is the tuple (path of binding, path of
term); if the term is not bound this is the tuple ((), path of the
term).

	
xotl.ql.translation.cmp_terms(term1, term2, strict=False)

	Compares two terms in a partial order.

This is a partial compare operator. A term t1 < t2 if and only if t1
is in the parent-chain of t2.

If strict is False the comparison between expressions will be made with
the eq operation; otherwise is will be used.

If either t1 or t2 are generator tokens it’s
expression is used instead.

Examples:

>>> from xotl.ql.core import this, these
>>> t1 = this('a').b.c
>>> t2 = this('b').b.c.d
>>> t3 = this('a').b

>>> cmp_terms(t1, t3)
1

But if equivalence is False neither t1 < t3 nor t3 < t1 holds.
>>> cmp_terms(t1, t3, True)
0

Since t1 and t2 have no comon ancestor, they are not ordered.
>>> cmp_terms(t1, t2)
0

>>> query = these((child, brother)
... for parent in this
... for child in parent.children
... for brother in parent.children
... if child is not brother)

>>> t1, t2, t3 = query.tokens

>>> cmp_terms(t1, t2)
-1

>>> cmp_terms(t2, t3)
0

	
xotl.ql.translation.token_before_filter(tk, expr, strict=False)

	Partial order (<) compare function between a token (or term) and an
expression.

A token is before an expression if it is (or is before of) the binding of
any of the terms in the expression.

strict has the same meaning as in cmp_terms().

	
xotl.ql.translation.cmp(a, b, strict=False)

	Compare function between tokens and expressions.

The following rules are used to make this compare function less partial:

	When two terms are not orderable in the sense of cmp_terms(), they
are compared by its signature (see get_term_signature()).

	If token is not before than a filter in the sense of
token_before_filter(), then if it’s before only if it’s also before
any of the terms in the expression, otherwise the token is after the
expression. This means that a token and an expressions are never regarded
as equal.

	Any two expressions are considered equal.

strict has the same meaning as in cmp_terms().

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 xotl.ql.translation.py – A test bed translator for Python’s VM

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

xotl.ql.translation.py – A test bed translator for Python’s VM

This modules implements a “naive translation” algorithm from query
objects to a simple execution plan that fetches objects
residing in Python’s memory.

Warning

This module is not intended for production use. It is just a
sketch of how a translator might be constructed. However modestly,
it also serves the purpose of showing off the query language in
action.

Functions

	
xotl.ql.translation.py.naive_translation(query, **kwargs)

	Takes a query object and returns an query execution
plan.

Once the plan is returned it may be called several to get, each time, the
matching objects. This is, you don’t have to do the translation process each
time you need to fetch objects.

This function does not keep a cache from query objects to
execution plans.

Currently no ordering or partitioning is performed.

Besides normal arguments, you may also pass:

	Parameters:	only – A sequence of package/module names from which you’d like to
drawn objects from.

Since the returned plan uses gc.get_objects() to get the
current objects in Python’s memory, this allows to reduce the
amount of objects passed to the query filters, and improves the
performance a bit.

Usage:

query = these(child for parent in Person
 if parent.childs & (parent.age > 30)
 for child in parent.childs
 if child.age < 10)
plan = naive_translation(query)

	
xotl.ql.translation.py.init(settings=None)

	Registers the implementation in this module as an IQueryTranslator for
an object model we call “Python Object Model”.

Warning

Don’t call this method in your own code, since it will override all of
your query-related configuration.

This is only intended to allow testing of the translation common
framework by configuring query translator that searches over Python’s VM
memory.

Details of this translator

This module is not intended to be extensible. It expressions that involve only
the functions from xotl.ql.expressions. Any other custom function will
not be translated and an error will be issued at translation.

Searching a custom object base

When the execution plan returned by this translation needs to find an object,
it normally iterates throughout the objects in the Python memory by using
gc.get_objects(). This might be expensive [1] cause Python might have
lots of objects in memory while only a few of them are of interest.

To alleviate this situation, this translation offers the following protocol: If
it can statically determine [2] the class of a given top-level
generator token and that class has an attribute this_instances that is a
collection (i.e a list, tuple, generator object, but not a dict nor a string);
then only the items in the this_instances collection are used to replace the
token’s apparitions in the query.

For instance:

@thesefy
class Universe(int):
 pass
Universe.this_instances = [Universe(i) for i in range(2, 10)] + ['invalid']

query = these(atom for atom in Universe)

The previous query have a single filter is_instance(atom, Universe) –
which is automatically injected by thesefy(). And since
Universe does have a this_instances attribute that holds a list of objects,
those will be the only ones inspected by this translator.

Notice that despite this_instances contains a string element, this element
won’t pass the is_instance check, so it won’t be returned by the execution
plan.

The guts

	
class xotl.ql.translation.py.var(term, vm)

	Represents a variable in the VM’s memory.

This basically implements the mapping between a syntatical ITerm and its
current value in the VM.

When a filter like parent.age < 32 is translated it will be translated
to something like var(parent.age, VM).__lt__(32). So the main job of
var is to provide an object that behaves like the one in the VM.

	
class xotl.ql.translation.py.vminstr(filter, vm)

	Represents an instruction tree ready to be executed in the VM current
state.

This is used for both evaluating filters and selections.

Footnotes

	[1]	For instance, PyPy creates lots of objects at the very start:

$ pypy -c "import gc; print(len(gc.get_objects()))"
21437

	[2]	The static analysis performed is quite dumb. It search for a single
is_instance(token, Object) expression (or sub-expression), if more than
one is found, then the analysis stops and therefor the protocol does not
continue.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Terms and glossary

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Terms and glossary

	AST
Abstract Syntax Tree

	A tree structure that represents a program in source form as a tree of
syntactical elements; but removes several too concrete elements of the
syntaxis; for instance in AST sentences separator are often removed and a
subtree for each individual sentence appears.

Query objects and expression trees resamble an AST.

See more on http://en.wikipedia.org/Abstract_Syntax_Tree

	bound term

	A term that is bound to a generator token. Inside a query
all terms are bound, unless they are free terms drawn
directly from the xotl.ql.core.this object.

The this object is never bound to any token.

	CST
Concrete Syntax Tree

	A tree structure that represents a program in source form as a tree of
all its syntactical elements.

See more on http://en.wikipedia.org/Concrete_Syntax_Tree

	data set

	An object that represents the result of executing a query against
a define storage. It should implement the interface
xotl.ql.interfaces.IDataSet, which is quite flexible since it
only requires the data set to be iterable using the next protocol.

	execution context

	An object that represents the context in which a given piece of code is
being executed. Contexts may influence how objects behaves. Every process
and thread entail an execution context, and they may form a tree.

Currently a very simple implementation of execution contexts is in the
module xoutil.context.

A future more comprehensive implementation is planned to be in
xotl.context; where contexts are though to be queriable using
xotl.ql query language.

	expression tree

	The tree that represents an expression as it was syntactically
constructed. Usually the inner nodes of the tree represents the
operations and the leaves the “atomic” operands.

For instance, the expression tree for the expression 3 + 4**2 <
18983 would have as its root node the < symbol, the children of
which would be:

	the expression tree for 3 + 4**2, that would have + as its root
node, and the literal 3 and the expression tree for 4**2 as
its children.

	The literal 18983.

This tree is depicted in the following image:

[image: _images/expr-tree.png]
In the expression language as implemented in xotl.ql.expressions,
operations are always classes derived from
Operator, and the operands are any python
object. The class ExpressionTree
represents such a tree.

	function object operator
functor operation
functor operator

	Represents the kind of operations that are
normally expressed by the invocation of a function, i.e: the
abs, max and min functions. This kind of operation is in
contrast with those that are syntactically expressed with
symbols like the addition operation usually encoded with the
+ symbol.

This is just a syntactical distinction, and not a fundamental
one. It’s perfectly possible to build the expression that
express the addition of 1 and 2 like this:

>>> from xotl.ql.expressions import add
>>> add(1, 2)
<expression '1 + 2' ...>

However it’s more natural to encode such expressions with the
usual plus sign, like this:

>>> from xotl.ql.expressions import q
>>> q(1) + 2
<expression '1 + 2' ...>

	generator token

	A generator token is an expression that is used inside a query
as a named location from which to draw objects. It relates to the FROM
clause in SQL, and to the <- operation in UnQL [UnQL].

In the query:

these((parent, child) for parent in this if parent.age > 34
 for child in parent.children if child.age < 2)

There are two such tokens: the first captures the iteration over
this and the second, the iteration over parent.children.

See xotl.ql.interfaces.IGeneratorToken for details.

	object model

	An object model is an object-oriented model which describes how objects
may exist and how they may relate to each other.

This include relational model; in such a model an object is a single
collection of named scalars that belongs to a single entity. Relations
are just foreign-keys, and the semantics associated with relations is
that of referential integrity.

A relational database is a kind of storage that uses the
relational model as is object model (usually with some variations).

xotl.ql does not provides an API for expressing object models, but it
assumes that a translator exists which has
enough knowledge to deal which such an object model.

Todo

Wouldn’t the semantics of a object model be capture by category
theory?

The authors of [coSQL2011] point that this is possible; but I’ve not
study that much yet ;)

	OMCaF
Objects Model Canonical Form

	An ongoing effort to build a model for object-oriented systems with
semantics included. Part of the (yet unreleased) xotl.model package.

	query

	The term query is used in this documentation with two meanings that
depend on the context:

	The generator expression as seen in the code that express what is
intended to fetch from the storage(s).

In the most part of this documentation the term query will refer to
this sense of the word. However, to disambiguate we’ll use the term
query expression to refer to this sense of the word if
needed.

	The (internal) data structure that represents the query (as
in item a) to the program.

We prefer the term query object for this sense of the word,
but sometimes it just does not matter.

	query expression

	This term is used solely to distinguish a query as the
construction expressed in the (Python) language from the internal data
structure (query object).

	query object

	This term is used solely to distinguish a query as an internal
data structure in contrast to the language construction (i.e the first
meaning for the term query) that implies such a structure.

	query translator
translator

	In the general design a query translator is a component that receives a
query object and produces a query execution plan. The
query execution plan depends on the translator for it encompasses the
knowledge about both the object model and the object
storage. A CouchDB translator, for instance may simply
translate the whole query to a CouchDB view and return a plan that just
involves quering that view.

	query execution plan

	When a query object is processed by a query translator
it produces an execution plan. Such a plan is a sort of a compiled
form of the query.

The execution plan should include instructions to retrieve the objects
expected. An execution plan may be as simple as:

just execute the SQL query SELECT * FROM sometable [WHERE ...]
[ORDER BY ...] [OFFSET ...] against the default relational
database;

then, return an iterator for instances of those objects created by
the factory class ISomeModel.

to another plan that checks an index stored in a SQL database, but
fetches objects from a remote system through REST interface.

The interface for a query execution plan in this package places almost
no restrictions, it just requires that the execution is a callable that
returns an iterable data set using the next protocol.

	storage
object storage

	A software component that allows to “persists” objects. Most of the time
the storage relates to a single object model. For instance
relational databases use the relational model.

In general, a storage is a place from which one could draw objects
from. We may then, relax the “persistence” requirement from a component
to be considered a storage. For instance, a memcached server could be
considered a key-value storage, that a query translator might target.

	thread-local object

	A thread-local object is an instance of the threading.local
class. An instance of this class acts like a global variable, but it
holds values local to a given thread; so, each thread has its own
“global” variable. Please refer to Python’s documentation for more
information.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Next releases goals

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Next releases goals

Principles

Since release 0.1.6 we have fixed all know bugs for the language. Although
we’re still in the early stages of the project, we have moved to a beta release
cycle.

So we’re a providing a list of goals to be meet for the next release. We’re
willing to follow a Quality Based release cycle; meaning that we should make a
stable release until all known bug regarding main components and/or goals in
our backlog the target release are closed.

The following list a list of goals to be accomplished for next minor releases.

Goals

Release 0.2.0

	Finish the implementation of the module xotl.ql.translation. Allowed
not be optimized, just a working testbed for queries.

	Provide a protocol for addressing sub-queries as proposed in the
discussion remarks of the “Free” terms section.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Changelog

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Changelog

Release 0.2.1

	Updates to the latest xoutil release that introduces changes in
xoutil.context API.

	A lots of fixes to the xotl.ql.translation.py module. The core
translation algorithm is now reasonably tested.

The sub-query interpretation for functions like all_ and other like it, is now implemented and
partially tested.

We have also introduced a class-level protocol for instances so that the search space for objects be reduced
in the hope of making this translator usable for one-user-only, short-lived
applications.

Release 0.2.0

	Another round of redesign has been completed: The old and clunky QueryPart
concept was removed, now just expressions, bound terms,
and generator tokens are the needed.

However a new protocol was introduced.

	Compatible with Python 3.2 out-of-the-box, no need to use the 2to3
script.

	Hooray! We have now a test-bed translator
partially implemented. It’s quite new and under-tested and sub-queries
functions (like all_) are not yet translated.

Although PyPy is not fully supported, it passes all tests of the core
language, but fails in the translation. Nevertheless the
xotl.ql.translation.py is not meant to be used in production.

2012/12/20 - Release 0.1.8

	Fixed a bug discovered while cleaning up the implementation. Arguments for
N_ARITY functions where not being properly handled.

This was fixed actually by simplifying xotl.ql.core.QueryPart to
implement the target protocol to extract is
expressions.

	Improves and updates documentation.

	Provides a “wish list” for future releases in Next releases goals.

2012/12/18 - Release 0.1.7

	Fixes pending bug that make tests fail randomly. Now this is
deemed stable enough!

Start developing translators!

	Proposing to release a version 0.2, to mark the current level
of maturity.

2012/12/08 - Release 0.1.6

	Fixes several bugs. But there’s still pending a non-determinancy
bug.

	Improved an explanation of internal details of the current
implementation.

	Starts to comply more closely with PEP8: Use a single blank line to
separate class-level definitions (we used 2); use two blank lines
separate module-level definitions.

2012/11/05 - Release 0.1.5

	Huge revamp of design (again). Introduced the metaphor of “particles
bubble” to capture the query expression most precisely.

A draft of the description of “Internal details...” is provided.

2012/10/22 - Release 0.1.4

	Huge revamp of design. Now I’m proud to say the query language
is almost done in its first stage.

Introduces QueryPart, loads of documentation has been updated.
Tests for design are now almost done, etc...

You’re encourage to try it!

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Contributors and acknowlegment

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Contributors and acknowlegment

The following are the main contributors so far to this release:

	Manuel Vázquez [http://twitter.org/mvaled/] has got his hands dirty by
programming this bunch of releases.

	Medardo Rodríquez [http://twitter.org/merchise/] provided most of the
conceptual framework, came with the idea of using comprehension syntax and
has mentored the programmer.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Licence: GNU General Public License version 3

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Licence: GNU General Public License version 3

Version 3, 29 June 2007

Copyright (c) 2007 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed to
take away your freedom to share and change the works. By contrast, the
GNU General Public License is intended to guarantee your
freedom to share and change all versions of a program -to make sure it
remains free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for them if you wish),
that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs, and that you
know you can do these things.

To protect your rights, we need to prevent others from denying you these
rights or asking you to surrender the rights. Therefore, you have certain
responsibilities if you distribute copies of the software, or if you modify
it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must pass on to the recipients the same freedoms that you
received. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1)
assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this
free software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such
problems arise substantially in other domains, we stand ready to
extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the
GPL assures that patents cannot be
used to render the program non-free.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU
General Public License.

“Copyright” also means copyright-like laws that apply to other
kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under
this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of
the work in a fashion requiring copyright permission, other than the making
of an exact copy. The resulting work is called a “modified
version” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Program or a work
based on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for infringement
under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables
other parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal
Notices” to the extent that it includes a convenient and prominently
visible feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the extent
that warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents
a list of user commands or options, such as a menu, a prominent item in the
list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the
work for making modifications to it. “Object code” means any
non-source form of a work.

A “Standard Interface” means an interface that either is an
official standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything,
other than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major Component,
and (b) serves only to enable use of the work with that Major Component, or
to implement a Standard Interface for which an implementation is available
to the public in source code form. A “Major Component”, in this
context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work
runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means
all the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but which
are not part of the work. For example, Corresponding Source includes
interface definition files associated with source files for the work, and
the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of
the work.

The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright
on the Program, and are irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited permission to run the
unmodified Program. The output from running a covered work is covered by
this License only if the output, given its content, constitutes a covered
work. This License acknowledges your rights of fair use or other
equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force. You
may convey covered works to others for the sole purpose of having them make
modifications exclusively for you, or provide you with facilities for
running those works, provided that you comply with the terms of this License
in conveying all material for which you do not control copyright. Those
thus making or running the covered works for you must do so exclusively on
your behalf, under your direction and control, on terms that prohibit them
from making any copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes it
unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure
under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention is
effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of
the work as a means of enforcing, against the work’s users, your or
third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice; keep intact all
notices stating that this License and any non-permissive terms added in
accord with section 7 apply to the code; keep intact all notices of the
absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you
may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce
it from the Program, in the form of source code under the terms of section
4, provided that you also meet all of these conditions:

	The work must carry prominent notices stating that you modified it,
and giving a relevant date.

	The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact
all notices”.

	You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of
how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such
permission if you have separately received it.

	If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works,
which are not by their nature extensions of the covered work, and which are
not combined with it such as to form a larger program, in or on a volume of
a storage or distribution medium, is called an “aggregate” if
the compilation and its resulting copyright are not used to limit the access
or legal rights of the compilation’s users beyond what the individual works
permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these ways:

	Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

	Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as long
as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding Source
from a network server at no charge.

	Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

	Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

	Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in
accord with this section must be in a format that is publicly documented
(and with an implementation available to the public in source code form),
and must require no special password or key for unpacking, reading or
copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of
this License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that
they are valid under applicable law. If additional permissions apply only
to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License
without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases
when you modify the work.) You may place additional permissions on
material, added by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add
to a covered work, you may (if authorized by the copyright holders of that
material) supplement the terms of this License with terms:

	Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

	Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

	Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

	Limiting the use for publicity purposes of names of licensors or
authors of the material; or

	Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or

	Requiring indemnification of licensors and authors of that material
by anyone who conveys the material (or modified versions of it)
with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you
may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with this section, you must
place, in the relevant source files, a statement of the additional terms
that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form
of a separately written license, or stated as exceptions; the above
requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights under this License
(including any patent licenses granted under the third paragraph of section
11).

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under this
License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a
copy of the Program. Ancillary propagation of a covered work occurring
solely as a consequence of using peer-to-peer transmission to receive a
copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a
license from the original licensors, to run, modify and propagate that
work, subject to this License. You are not responsible for enforcing
compliance by third parties with this License.

An “entity transaction” is a transaction transferring control
of an organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered work
results from an entity transaction, each party to that transaction who
receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the
work from the predecessor in interest, if the predecessor has it or can get
it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose a
license fee, royalty, or other charge for exercise of rights granted under
this License, and you may not initiate litigation (including a cross-claim
or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under
this License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor
version”.

A contributor’s “essential patent claims” are all patent
claims owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition,
“control” includes the right to grant patent sublicenses in a
manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent
license under the contributor’s essential patent claims, to make, use,
sell, offer for sale, import and otherwise run, modify and propagate the
contents of its contributor version.

In the following three paragraphs, a “patent license” is any
express agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or covenant not
to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the
Corresponding Source of the work is not available for anyone to copy, free
of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1)
cause the Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular work, or
(3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one
or more identifiable patents in that country that you have reason to believe
are valid.

If, pursuant to or in connection with a single transaction or arrangement,
you convey, or propagate by procuring conveyance of, a covered work, and
grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended to
all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include
within the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered work
if you are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under
which the third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or
compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any
implied license or other defenses to infringement that may otherwise be
available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey the
Program, the only way you could satisfy both those terms and this License
would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to
link or combine any covered work with a work licensed under version 3 of the
GNU Affero General Public License into a single combined
work, and to convey the resulting work. The terms of this License will
continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time
to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public License “or any later version” applies to
it, you have the option of following the terms and conditions either
of that numbered version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of the GNU General Public License, you may
choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be
used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or
modify it under the terms of the :abbr:`GNU (GNU is Not Unix)`
General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the:abbr:`GNU (GNU is Not Unix)` General Public License for more
details. You should have received a copy of the :abbr:`GNU (GNU
is Not Unix)` General Public License along with this program. If
not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper
mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type
'show w'. This is free software, and you are welcome to
redistribute it under certain conditions; type 'show c' for
details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, your
program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not
permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Lesser
General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Comparison with Pony

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Comparison with Pony [http://ponyorm.com/]

	Date:	Tue Apr 30, 2013 (2013-04-30.)

	Document status:

		Very early draft.

	Author:	Manuel Vázquez Acosta (@mvaled [http://twitter.com/mvaled/])

	Summary:	Describes and compares PonyORM and xotl.ql. Proposes to explore
bytecode disassembling as way to implement xotl.ql.

Pony [http://ponyorm.com/] is an ORM [http://en.wikipedia.org/wiki/Object-relational_mapping] implementation that shares our vision of writing queries using
the generator expressions of Python. Their queries look like:

persons = select(p for p in Person if 'o' in p.name)

The project seems to be started in 2006, but I have just discovered today. And
I like some of the external features it exposes; like the use of the true
logical and and or binary operators; and everything we have had to
circumvent in xotl.ql so far.

In this document I would like to describe how Pony [http://ponyorm.com/] is different/similar to
xotl.ql and how they might influence our future work.

What Pony is that xotl.ql is not

Pony is an ORM

Pony is an ORM [http://en.wikipedia.org/wiki/Object-relational_mapping]; meaning it concerns itself with interacting with a
relational database like SQLite, MySQL and PostgreSQL.

xotl.ql does not aim to target any specific object model not even the
relational model, and thus it does not aim to target any specific database
system. This job is left to query translators to
perform.

In this regard xotl.ql does what the pony.decompiling
module does; only different.

This is the only true difference in the broader aim that Pony and xotl.ql
have. However, they differ a lot in design and implementation.

Pony disassembles the Python bytecode

Python does not make it easy to hook the logical operators and, or and
not. There are no protocols for them. Additionally, the protocols for
working with the in containment test operator always change the result to a
boolean. These rules make it impossible to create a complete expression
language using normal Python code.

Pony overcomes this difficulty by inspecting the low-level bytecode the
Python interpreter generates for the generator object. This is way they can
reconstruct an AST that is semantically equivalent [1]
to the original expression.

The xotl.ql way is fully explained in Internal details of the processing of query expressions. Basically we
tried to keep our implementation abstracted from Python’s implementation
details like the bytecode. Full disclosure: although we knew the existence of
the bytecode, we did not knew “the CPython bytecode”. Furthermore, we thought
it wasn’t needed and probably should be avoided to gain interoperability
between Python’s implementations (xotl.ql works the same over Python 2.7
than over Python 3.2).

Perhaps we were wrong. Perhaps what we should have done is study the several
bytecodes for our target Python implementations and have implementations for
those. Which leads me to:

How does Pony might influence our future work?

Perhaps the most impacting feature we would love to have is to write our
queries with true Python operators and not having & for and; and
all_ for all() and the like.

This would transform the usage of our expression language for queries; though,
the expression languages for predicates would probably suffer. Nevertheless we
would still need these, so we might just require
predicates to be lambdas (which would be cool actually).

But we would keep our main goal of not being a data-accessing layer. So what
would change and what wouldn’t change if we pursue this avenue:

	We would keep the concept of a query
translator. these will always return a (probably
changed) xotl.ql.interfaces.IQueryObject with the AST of the query.

	Syntactical pairing of query expressions and
query objects would be lost. However, semantics would
be kept.

	Whether or not the Python ast module is a fit for our query/expression
language is still not clear. See UnQL, SQL, and NoSQL (coSQL), specially the
[coSQL2011] reference. Probably the Python’s AST serves as an internal
intermediary language, but the AST exposed to translators would probably
resemble the monadic query language. At this moment I just don’t know.

Next steps

In the next weeks I’ll be doing the following:

	Study the Python 2.7 bytecode as explained in dis [http://docs.python.org/library/dis.html#dis] standard module and
other Internet public sources.

I can use the pony.decompiling as a starting point. See the tweets [https://twitter.com/mvaled/status/330045481671602176].

	Do the same for Python 3.2 and probably Python 3.3.

	Propose a new API in an experimental branch.

Footnotes

	[1]	Syntactical equivalence might not possible this way since Python uses the
same bytecode for different syntactical constructions.

For example the following generators, which are semantically equivalent
(but not syntactically) generate the same bytecode:

this = iter([])
g1 = (parent
 for parent in this
 if parent.age > 1
 if parent.children)

g2 = (parent
 for parent in this
 if parent.age > 1 and parent.children)

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Thoughts on Query Languages

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Thoughts on Query Languages

This document is a draft. You may skip it entirely. It contains topics on
UnQL, and coSQL that were taken as inspiration for this work; but the
information in here does not have other practical effect in xotl.ql.

This document is rather a thinking pad I use when I need to think about query
languages in general and how they apply to xotl.ql.

Expressions are the core for query languages and many of it’s design decisions
are strongly biased for query languages needs. But they purpose is more
general. Notice that Term instances are they way to
specify the selected data in queries.

Before executing an expression, it has to be compiled into a form feasible to the current database (either relational or not)
management systems. For instance, it would be desirable that on top of CouchDB [http://apache.org/couchdb]
(or Couchbase [http://www.couchbase.com/]) expressions would be translated to CouchDB’s javascript views
if possible.

For instance a query like:

these(parent for parent in this if parent.age > 30)

might be translated to a view with the following map function:

function(doc) {
 if (doc.age > 30) {
 map.emit(doc._id, doc)
 }
}

A query with a subquery like:

these(parent for parent in this
 if parent.children &
 all_(child.age > 5 for child in parent.children))

may be translated cleverly straightforwardly if children is (as CouchDB
encourages for documents) is contained inside parent:

function (doc) {
 if (doc.children) {
 var _cond = function(c){return c.age > 5}
 var _i = 0;
 var _child = doc.children[_i];
 var _all = _cond(_child);
 var _l = doc.children.length();
 while(_all and _i < _l) {
 _i++;
 _child = doc.children[_i];
 _all = _cond(_child);
 }
 if (_all) {
 map.emit(doc._id, doc)
 }
 }
}

If children is not fully contained in parent such kind of translation is
not possible, so the query translator might use several views and
integrate it’s results with Python code.

The algorithm for translation may be decomposed like the following:

	Create a mapping from simple expressions (not queries) tree to javascript
code.

For instance an expression like:: this('x').title + this('x').name might
be translated like the following javascript:

var x = doc_x; // assuming doc_x represents the this('x')
return x.title + x.name;

	Create a mapping from simple functions names to javascript functions:

function startswith(str, preffix) {
 return str.indexOf(preffix) === 0;
}

function endswith(str, suffix) {
 return str.slice(-suffix.length) === suffix;
}

Todo

Écrire cette partie

UnQL, SQL, and NoSQL (coSQL)

There’s a good article [UnQL] that describe several features of a UnQL
(Unstructured Query Language), that are of interest to this module. Another
article exposes the relation between NoSQL and SQL, and renames the former as
coSQL following the categorical tradition since NoSQL is dual to SQL
[coSQL2011] [coSQL2012].

In this section we shall explore those articles and will try to relate them
with our work on xotl.ql. First, we’ll give a brief review of the work of
Buneman et al. on UnQL. And then, explore the ideas of Meijer and Bierman ideas
about NoSQL.

The [UnQL] papers uses an edge-labeled rooted directed graph (although they
called labeled tree) to represent the data. In this model all the “real values”
[1] are encoded in the labels of the graph. The following figure is
extracted from the paper:

[image: _images/unql-data.png]
One may read this graph as:

	It has many “Entries” which may be either “Movies” or “TV Shows”.

	Following the branch to the left of the tree, it has an Entry, which is a
Movie. Such a movie has:
	A Title, which is “Casablanca”.

	A Cast, which includes “Bogart”, and “Bacall”.

	A Director, whose attributes are not shown in the image.

How does one tell whether the label of the edge is an attribute name or value?
There’s no such thing as attribute name or attribute value in this setting. One
may tell a terminal label because the node it points to has no outgoing
edges.

In Python, the object model is more elaborate in this regard, but we can figure
it as objects, which has attributes, and those attributes’ values are other
objects. This is very similar to the edge-labeled graph; but in Python there’s
not such thing as a single root. To overcome this, the method get_objects()
from the gc module may be used to get all the objects on the Python’s VM; so
it may take the place of the root, the objects returned may be the level one
[2].

Although there’s no fixed structured (for the graph), there may types that
restrict links to/from objects. For instance, it’s highly unlikely (or bizarre)
that there will a third edge “down” the node to which an edge with label
“Title” is pointing to; i.e. the following schema is not likely to happen:

* -------> * -------------> * ---------> *
 Title "Casablanca" what?

This is unlikely since we don’t expect strings to have attributes
[3]. However, there’s nothing in the UnQL paper that limits us to do
so but our own common sense.

The following figure shows with color-layers how the movie database may be
interpreted:

[image: _images/unql-data-layers.png]
The language UnQL uses variable binding and pattern matching. The very first
query they offer is the following (I included the braces for better
readability):

select t
where {R1 => \t} <- DB

The query select all trees t which are below an edge with label R1 from
the root of the DB. If we fix that level 1 labels are actually types this query
may be written in xotl.ql like this:

(t for t in this if is_instance(t, R1))

If we don’t make the assumption of level 1 labels being types, then the other
option is to assume is an attribute name:

(x.R1 for x in this)

A query with partial selection:

select {Tup => {A => x, B => y}}
where {R1 => Tup => {A =>\x, B => \y, C => 3}} <- DB

Because we can’t do the pattern matching stuff in Python our query is a bit
bigger:

({"Tup": {"A": tup.A, "B": tup.B}}
for tup in this
if is_instance(tup, R1) & tup.A & tup.B & (tup.C == 3))

One of the most problematic query they propose is the following:

select {Tup => {Actor => x, Title => y}}
where {Entry => Movie => {Title => \y, Cast => \z}} <- DB,
 {\x => _} <- z ∪ (select u where _ => \u <- z), isstring(x)

Our query would be the union of two queries:

from itertools import chain as union
build_tup = lambda actor, title: {"Tup": {"Actor": actor, "Title": title}}
union((build_tup(actor, movie.title)
 for movie in this
 if is_instance(movie, Movie)
 for actor in movie.cast if is_instance(actor, basestring)),

 (build_tup(actor, movie.title)
 for movie in this if is_instance(movie, Movie)
 for actor_group in movie.cast
 for actor in actor_group if is_instance(actor, basestring))
)

Warning

We’re abusing of our query language here: chain can’t be used directly
over the generator expressions.

–

In [coSQL2011] the authors only focused on key-value stores for noSQL
databases. Although they claim that:

While we don’t often think of it this way, the RAM for storing object
graphs is actually a key-value store where keys are addresses (l-values)
and values are the data stored at some address in memory
(r-values). Languages such as C# and Java make no distinction between
r-values and l-values, unlike C or C++, where the distinction is
explicit. In C, the pointer dereference operator *p retrieves the value
stored at address p in the implicit global store.

In fact, this model is quite suitable to represent the labeled tree model of
[UnQL]. Notice that the type of the labeled trees is informally described as:

a set of pairs of labels and trees.

We can see that labels may be the keys, and the trees may be encoded as
references.

Generator Token

A generator token is related to the <- DB in the UnQL syntax, it’s related
to the FROM clause in SQL and LinQ. It represents from where the objects are
drawn. SQLAlchemy’s expression language has a similarity with
xotl.ql’s Query API, it’s select() function, does not requires an explicit
declaration of FROM, because it gathers the table from the SELECT-ed columns.

This is quite similar to the idea of having the expressions in the
selection

Footnotes

	[1]	Of course, the edges (not its labels) carry very important
information: from which object such a label is drawn and to what
object it points. In this sense the labeled-edge carries all the
information, and if the nodes are somehow identified, it carries
the same information as the single Triplet in a RDF [http://www.w3c.org/Semantics/] store.

	[2]	Since they are all the objects in the VM, we actually get
a one-level only tree with edges between the siblings. But
we can search for objects of specific types to be the
level one objects.

	[3]	I know, I know... Python’s string do have attribute; but
what’s the point in bringing them to this debate?

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Internal details of the processing of query expressions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xotl.ql 0.2.2 documentation

Internal details of the processing of query expressions

This document is not part of the external API of the query language, but a
description of internal implementation details. The intended audience for this
document is: programmers that need to extend the core or the expression
language; and programmers writing new translators.

Up-to-date notice: Since 0.2.0 there’s no longer a query part concept:
If you read this document as it is now, you should observe the following:

	Whenever you see we mention a query part is being created actually a
simple bound term is being used.

	Now expressions emit themselves to any bubble lying around (which may be
put in a stack o bubbles for sub-query related stuff.)

This document explains how it’s implemented the “parsing” of a query
expression into a query object. It’s a rather technical document and
does not belong to the API, so you may not read it unless you are interested in
the internal implementation of xotl.ql.core.

Restrictions and goals of the procedure for constructing query objects

When processing a query expression, all that is passed to the
these callable is a generator object (and possible some
keyword arguments that are irrelevant for the purposes of this
description). The key point is that we’re not in control of how Python does
the job of interpreting the real query expression.

This is further complicated because there might be several expression inside a
single query expression, and we don’t know where they “end”. Thus, we can’t
trust the expression building mechanism to “store” built expressions, because
at that level there’s no need of a “multi-expression” kind of object. In fact,
as an historical note, these was created because we
needed to detect expression boundaries, and specially distinguish expressions
occurring in the selection part of the query from those that occur in filters.

Taking account of this restriction, the task of the query object builder is
to get a structure that represents a given query
expression. But we should try not to interpret/validate the query neither
syntactically nor semantically. Python’s has already done it’s job of assuring
that the expression is syntactically correct. Our expression language will raise exceptions if it finds any errors
(unsupported operators for instance).

The only restriction is that the resultant query object should be
syntactically equivalent to the input query expression.

As an example let’s analyze the following query expression:

these((person.name, partner.name)
 for person in this('person')
 for partner in this('partner')
 for rel in this('relation')
 if rel.type == 'partnership'
 if (rel.subject == person) & (rel.object == partner))

For this query expression, the query object object should:

	Have for tokens the ones related to
this('person'), this('partner') and this('relation').

	Have for selection the tuple that contains
the expressions person.name and partner.name.

In these expressions, person is actually the term this('person'), and
partner is actually the term this('partner')

We’ll cover the difference (and relation) of terms and tokens later.

	Have for filters a list which contains:

	the expression rel.type == 'partnership', where rel stands for the
term this('relation')

	the expression (rel.subject == person) & (rel.object == partner), the
terms are the same as before.

If, instead, the query expression were:

these((person.name, partner.name)
 for person in this('person')
 for partner in this('partner')
 for rel in this('relation')
 if rel.type == 'partnership'
 if rel.subject == person
 if rel.object == partner)

Although it is semantically equivalent to the previous one, its query object
should not be the same; for the query expression “parser” must not deal
with that kind of equivalence: this query expression is not syntactically
equivalent to the previous one. So, the attribute filters changes to a list
of:

	the expression rel.type == 'partnership'

	the expression rel.subject == person

	the expression rel.object == partner

Terms versus Tokens

As pointed before, there’s subtle distinction between terms and tokens. In
previous alpha versions of xotl.ql, we used to think that a given term in a
query object should be related to an object generated from a token if that term
was on the list of tokens (or the term’s
parent was a token). But this approach was
fundamentally flawed.

The main reason is that a collection may have attributes itself that are
different from those attributes of the objects it yields.

Let’s make our point clearer by inspecting the query object expressions
corresponding to:

these((parent, child)
 for parent in this('parent')
 if parent.children & parent.children.updated_since(1)
 for child in parent.children
 if child.age < 6)

The corresponding query object have:

	two tokens: this('parent') and this('parent').children

	and two filters:
	this('parent').children & this('parent').children.updated_since(1)

	this('parent').children.age < 6

Why does in the expression child.age < 6 “mutates” to
this('parent').children.age < 6. Because, the __iter__ method of a term (like
this('parent').children) yields a query part that wraps the very term,
and since parent.children is actually this('parent').children, then
child is just a query part that wraps that term.

Then, how could we tell that this('parent').children.updated_since(1) is a
condition over the collection this('parent').children instead over each
object drawn from it? How do we tell that this('parent').children.age < 6
is a condition over objects drawn from the collection and not a condition over
the collection itself?

The answer is simple: terms that occur in expressions of a query object, are
usually bound to a generator token. If
we were to explore the terms that occurs in the filters before, we would find
that the term this('parent').children.updated_since is bound to the
this('parent') token; and the term this('parent').children.age is bound
to the token this('parent').children. Thus we can precisely determine to
which object a term refers.

“Free” terms

Sometimes when query expressions involve functions like all_ that may take
“free” expressions as arguments, terms in that expressions are not
bound. Furthermore, the query object building machinery does not even realizes
those term were there.

In the following query:

these(parent
 for parent in this('parent')
 if any_(this.children, this.age > 6))

The terms this.children and this.age are not bound to any token in the
query, thus they are free terms.

Notation

Before proceeding, let’s introduce some notations to keep our explanation more
compact:

	we will use the notation tk<expr> to represent the generator
token built by the the expression expr;

we’ll use the name of term instead of the full this(name) when a term
occurs in an expression.

So tk<parent> represents a token created with this('parent').

How does these builds a query object?

When creating a query object, xotl.ql.core.these creates a stack of
“particles bubbles” [1] before drawing any object from the generator
object (i.e before calling next to the generator object). The bubble captures
every expression and token that are emitted in the making of expressions that
happen inside the query expression.

Expressions know about bubbles
and if any bubble is lying around when a new expression is created, the
expression will be captured. The same happens when a new token is created
(i.e. by calling iter over a term).

Let’s see how the whole thing works by looking at how it would process the
following query expression:

these((person.name, partner.name)
 for person in this('person')
 for partner in this('partner')
 for rel in this('relation')
 if rel.type == 'partnership'
 if (rel.subject == person) & (rel.object == partner))

When the shown sentence is executed, Python creates a generator object and
invokes the callable these with the generator as its sole argument. Then
the following steps are performed in the given order:

	An instance of a IQueryParticlesBubble is
created, and is pushed to a thread-local stack
of bubbles.

	Then these calls next(generator), and then Python calls the __iter__
method of this('person').

This method creates the token tk<person> and bounds the term to it. This
token is emitted and captured by the top-most bubble in the thread-local
stack.

Then it also builds the query part qp<person> and yields it. This query
part is not emitted because __iter__ knows it won’t make any sense.

	Python now calls the __iter__ method of this('partner'), this will
create the token tk<partner> and the query part qp<partner>; this query
part is yielded. Again only the token tk<partner> is emitted and captured
by the bubble.

	Once more, Python calls the __iter__ method of this('relation'), which
build tk<relation> and yields qp<relation>. The bubble captures the token
tk<relation>.

At this point it’s Python, not our program, who has the handle of these
three query parts. But our bubbles has captured all the tokens.

	Now Python beings to process the ifs. The generator expression local
variable rel refers to the query part qp<relation>. So, when trying to
get rel.type, Python calls the __getattribute__ method of the query
part qp<relation>, who delegates the call to its contained
expression which is
this('relation'), and then wraps the result into another query part
qp<relation.type> and emits the query part (and is captured by the
bubble.)

Finally qp<relation.type> is returned (to Python).

	Now Python calls the __eq__ method of qp<relation.type> and passes the
string 'partnership' as its sole positional argument.

The query part, delegates the __eq__ call its contained expression
this('relation').type. This returns the expression tree
eq(this('relation').type, 'partnership'). Now we create another query
part qp<eq(relation.type, ‘partnership’)>, and emit it.

The bubble realizes that this newly emitted query part’s expression
contains (see
capture_part()) the
previously captured expression this('relation').type; so it forgets
about this “contained” expression, and just keep the bigger one.

We then return the query part qp<eq(...)> (to Python).

	Since Python knows that the first if is entirely processed it moves to the
second if (cause it regards the returned query part as True).

Note

At this point our code does not know that the if has finished, since
it’s Python who has the control of how the expression is parsed, not us.

	Python, following it’s priority rules, determines that it will run the
following steps:

	Compute qp<relation>.subject, by calling __getattribute__ to
qp<relation>.

	Compute operator.eq(1., qp<person>)

meaning it will proceed as if calling the function operator.eq with
the result of step 1. as its first argument and qp<person> as the
second. See the module operator of the standard
library.

	Compute qp<relation>.object

	Compute operator.eq(3., qp<partner>)

	An finally compute operator.and_(2., 4.)

The steps 1. and 3. are quite similar to how the rel.type is
processed. For the step 2. notice that the first argument is
qp<relation.subject>, so Python invokes the method __eq__ of this query
part with qp<person> as its argument.

The query part notices that this argument is also a part and extracts its
expression (in this case
this('person')) before proceeding. Then it delegates the
operator.eq() to its own expression (this('relation').subject)
with this('person') as the second argument.

The result is wrapped inside a new query part qp<eq(relation.subject,
person)>. The created query parts are all emitted, and captured by our
bubble, and upon capture they are inspected to find out if they contain
previously emitted parts, and if they do, only the bigger ones are kept.

The query part is returned.

	After Python does the previously sketched steps, it now turns its attention
to building the selection (person.name, partner.name) tuple.

Note

Once again our program has no idea that all the ifs are done, and that
it will now be asked to build selection expressions.

Again, Python calls __getattribute__ to qp<person> to get its name
attribute; this call creates yet another part and emits it. Since that query
part does not contain any previously emitted part [2] this
part is placed on top of the bubble and not merged with any previous part.

Then, Python calls __getattribute__ to qp<partner> to get its name
attribute. Again, the part is emitted (and not merged – it can’t be.)

	Now the next(comprehesion) returns the tuple. If we were to call next
again it would raise a StopIteration exception, since
xotl.ql.interfaces.ITerm.__iter__() should yield a single query part.

	these() now regains control and it pops the top-most
bubble from a thread-local stack. If we inspect its
parts we’ll find the
following expressions in the given order:

	relation.type == 'partnership', where the term relation.type is
bound to tk<relation>.

	(relation.subject == person) & (relation.object == partner), where
the terms relation.* are bound to tk<relation>, the term person is
bound to tk<person> and the term partner is bound to tk<partner>.

	person.name

	partner.name

Notice, that the selection parts are the top (bottom in the list) of this
bubble. So...

	Now these() inspect the tuple of selected expressions,
and if they are at the end of the captured parts in the bubble, those parts
are disregarded.

	Finally, the query object is created and the selections are simply
assigned, the tokens are those
captured by our bubble, and the captured parts are assigned to the
attribute filters.

Footnotes

	[1]	Particles bubbles are used by experimental physicists to capture
sub-atomic particles. Our particle is either a token or an
expression, and our bubble captures them all and stores them so
that we are able to create the query object from those pieces (and
their order).

	[2]	Actually, since we use is comparison there will never be
a case in which parts that occur in different syntactical
units are confused although they may be equivalent – i.e
different ifs, or different elements in the selection
won’t be merged and thus their logical boundaries will be
kept.

 Copyright 2012-2013, Merchise Autrement.
 Created using Sphinx 1.1.3+.

